#### Michael Eichele

##### Well-Known Member

Technically, BC = (drag deceleration of the standard bullet) / (drag deceleration of the actual bullet). The reference of the standard bullet used is 1.000.

The below statements are not all there is to BCs. rather, the info below is BC in its most simple state used for comparison purposes to show the relation between sectional density and BC.

BC is (for the most part) a simple function of

SD = Bullet weight (in pounds) / bullet diameter^2

BC = SD / FF

Change the SD and not the FF and you change the BC plain and simple.

Two bullets of identical demensions where one is made of aluminum (specific gravity of 2.69) and the other is tungsten (specific gravity of 19.62) the tungsten will have a MUCH higher BC. If you have a jacketed lead bullet and an all copper bullet of identical demensions, again the jacketed lead bullet has a higher BC. You could have an aluminum bullet twice as long as a tungsten bullet utilizing the same form and the tungstun bullet will still win. It would take an aluminum bullet 7.3 times longer than a tungsten bullet to surpass the BC of the tungsten bullet. So if a bullet made of tungsten was 1" long, it would take an aluminum bullet of 7.3" to surpass the BC of the 1" tungsten bullet.

A current example is the 180 ACCUBOND and the 180 E-tip. One is longer than the other. They both have the same SD yet not the same specifec gravity. The Accubond has a specifec gravity of around 10.5 and the E-tip around 8.89. This meens that in order to get the E-tip up to the same weight of the Accubond, it has to be made longer. The nose and boattail appear to be the same. Note that the published BC data shows the E-tip to be higher than the Accubond. In the real world, this is not the case. Mathematically and physically, they will be extremely close to eachother. The AB is published at .507 where as the last time I double chronied them they were .523-.524 which is where Nosler publishes the E-tip. I have not chronied the E-tip and cannot vouch for it but would bet nearly anything that they are neck and neck.

Regardless of how long the bullet is, bullet length in and of its self does not equate to a higher BC.

Bullet length with a specific form factor made of a material that has a given specific gravity will make up it's weight. Make it longer and the BC goes up due to the added weight and subsequent SD. In the case of the E-tip versus the Accubond, they maintaind the same static form factor (ie: nose profile, boattail etc...) lengthened the bullet, changed the material (specific gravity) but the SD and subsequent BC remain the same. This is where we find that when we take two different bullets of equal weight and equal form yet one is a smaller caliber such as in the case of a 180 30 cal and a 180 284 cal the smaller caliber will always yeild a higher BC. This is because the weight to caliber ratio offers a much greater sectional density. Remember, increase the SD and the BC goes up all other components being equal.

Granted there will be other factors at play where the BC is concerned such as bore quality, velocity, stability factor etc.........The above is geared towards the basic mathematical components where all other factors such as bore quality, velocity etc.... are equal. Also it should be noted that the above statements are based on the G1 drag model. It is somewhat difficult to compare ballistic properties of different bullets if the BCs are refering to different drag models. With all the computers in the world, as powerfull as they are and what knowledge of mathematics we have, there is no substitute for measuring BC accurately without firing tests. Be it doppler, TOF (by way of bullet activated relays), double chronies, or drop tests. We can predict them with a reasonable degree of accuracy. Accurate enough to get on a big peice of paper anyway to be fine tuned.

So in short, in a sense, bullet length has alot to do with a bullet's BC but not in and of its self. Only how it relates to the overall bullet weight which in turn gives life to the SD.

Clear as mud??

M

The below statements are not all there is to BCs. rather, the info below is BC in its most simple state used for comparison purposes to show the relation between sectional density and BC.

BC is (for the most part) a simple function of

**Sectional Density and Form Factor.**SD = Bullet weight (in pounds) / bullet diameter^2

BC = SD / FF

Change the SD and not the FF and you change the BC plain and simple.

Two bullets of identical demensions where one is made of aluminum (specific gravity of 2.69) and the other is tungsten (specific gravity of 19.62) the tungsten will have a MUCH higher BC. If you have a jacketed lead bullet and an all copper bullet of identical demensions, again the jacketed lead bullet has a higher BC. You could have an aluminum bullet twice as long as a tungsten bullet utilizing the same form and the tungstun bullet will still win. It would take an aluminum bullet 7.3 times longer than a tungsten bullet to surpass the BC of the tungsten bullet. So if a bullet made of tungsten was 1" long, it would take an aluminum bullet of 7.3" to surpass the BC of the 1" tungsten bullet.

A current example is the 180 ACCUBOND and the 180 E-tip. One is longer than the other. They both have the same SD yet not the same specifec gravity. The Accubond has a specifec gravity of around 10.5 and the E-tip around 8.89. This meens that in order to get the E-tip up to the same weight of the Accubond, it has to be made longer. The nose and boattail appear to be the same. Note that the published BC data shows the E-tip to be higher than the Accubond. In the real world, this is not the case. Mathematically and physically, they will be extremely close to eachother. The AB is published at .507 where as the last time I double chronied them they were .523-.524 which is where Nosler publishes the E-tip. I have not chronied the E-tip and cannot vouch for it but would bet nearly anything that they are neck and neck.

Regardless of how long the bullet is, bullet length in and of its self does not equate to a higher BC.

Bullet length with a specific form factor made of a material that has a given specific gravity will make up it's weight. Make it longer and the BC goes up due to the added weight and subsequent SD. In the case of the E-tip versus the Accubond, they maintaind the same static form factor (ie: nose profile, boattail etc...) lengthened the bullet, changed the material (specific gravity) but the SD and subsequent BC remain the same. This is where we find that when we take two different bullets of equal weight and equal form yet one is a smaller caliber such as in the case of a 180 30 cal and a 180 284 cal the smaller caliber will always yeild a higher BC. This is because the weight to caliber ratio offers a much greater sectional density. Remember, increase the SD and the BC goes up all other components being equal.

Granted there will be other factors at play where the BC is concerned such as bore quality, velocity, stability factor etc.........The above is geared towards the basic mathematical components where all other factors such as bore quality, velocity etc.... are equal. Also it should be noted that the above statements are based on the G1 drag model. It is somewhat difficult to compare ballistic properties of different bullets if the BCs are refering to different drag models. With all the computers in the world, as powerfull as they are and what knowledge of mathematics we have, there is no substitute for measuring BC accurately without firing tests. Be it doppler, TOF (by way of bullet activated relays), double chronies, or drop tests. We can predict them with a reasonable degree of accuracy. Accurate enough to get on a big peice of paper anyway to be fine tuned.

So in short, in a sense, bullet length has alot to do with a bullet's BC but not in and of its self. Only how it relates to the overall bullet weight which in turn gives life to the SD.

Clear as mud??

M

Last edited: