The generator matrix
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 0 X 0 1 X X^2 1 X^2 X X X 1 1 1 1 1 1 1 X 0 X 0 1 1 1 X X^2 X X^2 X X 1 X X 1 1 1 X^2 X^2 0 0 X^2 X X 0 0 X X X^2 1 1 1 1 X X 0 X^2 X 1 1
0 X 0 X^2+X X^2 X^2+X X^2 X 0 X^2+X 0 X^2+X X^2 X X^2 X 0 X^2+X 0 X^2+X X^2 X X^2 X X^2+X X X^2+X X 0 X X X^2+X X X 0 X^2 0 X^2+X X^2 X X^2 X 0 X^2+X X X^2+X X 0 X^2 X^2 X X X X 0 X^2 X^2+X 0 X^2 X X^2+X X 0 X^2 X^2 0 X^2 0 X^2 X X^2 X^2+X X X 0 0 X^2 X^2 X^2+X X X X 0 0 X^2
0 0 X^2 X^2 X^2 0 0 X^2 0 0 X^2 X^2 X^2 X^2 0 0 0 0 X^2 X^2 X^2 X^2 0 0 0 X^2 X^2 0 0 X^2 0 0 X^2 0 X^2 X^2 X^2 X^2 X^2 X^2 0 0 0 0 X^2 X^2 0 X^2 X^2 0 X^2 0 0 X^2 X^2 X^2 0 0 0 0 X^2 X^2 X^2 X^2 X^2 X^2 0 0 0 0 0 X^2 X^2 0 0 X^2 X^2 0 0 0 X^2 X^2 X^2 0 X^2
generates a code of length 85 over Z2[X]/(X^3) who´s minimum homogenous weight is 85.
Homogenous weight enumerator: w(x)=1x^0+32x^85+14x^86+13x^88+2x^90+1x^92+1x^100
The gray image is a linear code over GF(2) with n=340, k=6 and d=170.
This code was found by Heurico 1.16 in 0.427 seconds.