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Introduction 
The mean trajectory of a spin-stabilized rifle bullet in free flight can be defined as the path 
in 3-space which is followed by the coning center about which the center of gravity (CG) of 
the coning bullet spirals throughout its flight. We term this center point of the circular 
coning motion the “mean CG” of the coning bullet. Thus, this mean CG moves smoothly 
along the mean trajectory at the bullet’s mean forward velocity. The mean velocity vector 
V(t) is tangent to the mean trajectory at the coning bullet’s instantaneous mean CG 
location.  
 

 

Coning Rifle Bullet at Extreme Top and Bottom Positions 
 
A non-zero coning angle α(t) at any time t causes the CG of the coning bullet to follow a 
helical path of small radius r(t) about this mean trajectory:  
 
r(t) = D(t)*SIN[α(t)]          (1) 
 
where D(t) is the gradually lengthening coning distance of the bullet’s CG from its coning 
apex. The coning apex distance D(t) is typically about 10 caliber at long supersonic ranges. 
The coning radius r(t) seldom exceeds about 1.0 calibers for dynamically stable rifle bullets 
in a typical flights downrange.  
 
The coning angle α(t) is itself a free variable in Coning Theory, along with its associated 
coning radius r(t). The coning angle α(t) increases with each change in flight conditions 



2 
 

encountered by the bullet in flight and decreases only with slow-mode damping. Thus, at 
any time t after launch, the coning angle α(t) depends upon the entire prior history of the 
trajectory. The coning half-angle α(t) is essentially also the aerodynamic “angle of attack” 
of the free-flying rifle bullet.  
 
From Coning Theory, the coning distance D(t) can be found in feet as:  
 
D(t) = q*S*(CLα + CDα)/(m*ω22)        (2) 
 
where only the bullet’s cross-sectional area S in square feet and mass m in slugs are 
invariant over time t and airspeed V(t) during the flight. The dimensionless coefficients of 
lift and drag are as they are usually defined in linear aeroballistic theory.  
 
The magnitude of the circular frequency ω2, the bullet’s coning rate in radians per second, 
can be evaluated from Coning Theory as:  
 
 ω2(t) = q*S*d*CMα/L    (α, L ≠ 0)       (3) 
 
where the instantaneous magnitude of the bullet’s angular momentum L equals Ix*ω(t). 
The dimensionless overturning moment coefficient CMα is also as it is usually defined in 
linear aeroballistics.  
 
This coning rate ω2(t) of the CG of the bullet is identically equal to the slow-mode 
gyroscopic precession rate of its spin-axis of the bullet, also ω2(t) radians per second. We 
usually find the gyroscopic precession rate ω2(t) from the Tri-Cyclic theory relationships:  
 
ω1(t) + ω2(t) = (Ix/Iy)*ω(t)  
R(t) = ω1(t)/ω2(t) = 2*{Sg + SQRT[Sg*(Sg – 1)]} – 1  
ω2(t) = [ω1(t) + ω2(t)]/[R(t) + 1]         (4) 
 
with Sg≥1.5 being the bullet’s gyroscopic stability factor at any point during its flight. The 
instantaneous spin-rate of the bullet is ω(t) in radians per second. Ix is the second moment 
of inertia of the bullet’s mass distribution about its spin-axis which is a principal axis of 
inertia. Iy is the second moment about any transverse principal axis through the CG of the 
bullet. The ratio Iy/Ix ranges from about 7 to about 14 for rifle bullets.  
 
The coning rate ω2(t) of a rifle bullet monotonically slows rather gradually from its launch 
value throughout its supersonic flight as the spin-rate of the bullet ω(t) slows and the ratio 
R(t) of its gyroscopic rates increases. We are not really considering subsonic flight here.  
 
During the supersonic portion of the rifle bullet’s flight in flat firing, its coning distance D(t) 
typically varies  from about 4 calibers at launch to about 10 calibers when the bullet has 
slowed to Mach 1.20 where transonic buffeting begins for many rifle bullets.  
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The cone apex precedes the mean CG along the mean trajectory by a distance equal to 
D(t)*COS[α(t)], but the coning axis and the cone apex themselves do not lie directly upon 
the instantaneous tangent to the 3-dimensional mean trajectory, the +V direction.  
 
For a right-hand spinning bullet, the coning axis yaws horizontally rightward of the tangent 
to the mean trajectory by the small Horizontal Tracking Error Angle εH(t). Here, the 
rightward yaw-of-repose attitude angle βR(t) of the coning axis is causative, and the 
horizontal curvature of the mean trajectory is the lagging aerodynamic response. We have 
formulated this horizontal-direction tracking error angle εH(t) in Coning Theory as:  
 
εH(t) = βR(t) – βT(t) ≥ 0         (5) 
 
where βR(t) is the instantaneous yaw-of-repose angle of the bullet’s coning axis, and βT(t) is 
the instantaneous attitude angle of the tangent to the mean trajectory in the horizontal 
plane. Each β-angle is measured in radians, positive rightward in the horizontal plane from 
the +x axis of an earth-fixed LVLH coordinate system centered on the launch point and 
aligned with the launch azimuth.  
 
The coning axis is also pitched vertically upward (nose high) in a vertical plane from the 
tangent to the mean trajectory at the mean CG location by the small Vertical Tracking Error 
Angle εV(t). This vertical tracking error εV(t) is also dynamic in nature and is caused by the 
downward pitching response of the bullet’s coning axis lagging in flight behind the 
continually downward (causative) gravitational curving of the mean trajectory in flat-
firing.  
 
This vertical tracking error angle εV(t) is normally quite small in flat firing, but a 
significantly larger version of this same vertical tracking error angle εV(t) has been termed 
the “pitch-of-repose” by McCoy in describing the higher launch-elevation-angle firing of 
spin-stabilized artillery projectiles; i.e., in non-flat, indirect firing.  
 
The vertical tracking error angle εV(t) can be defined as:  
 
εV(t) = φbar(t) – ΔΦ(t) ≥ 0          (6) 
 
where φbar(t) is the instantaneous pitch attitude (φ) of the bullet’s coning axis, and 
ΔΦ(t) is the instantaneous change since launch in the Vertical Flight Path Angle (Φ) of the 
tangent to the mean trajectory. Each angle is measured at the mean CG location in radians, 
positive upward from the horizontal. Since ΔΦ(t) always exceeds φbar(t) in magnitude as 
both angles become increasingly negative, εV(t) is always positive in flat-firing.  
 
We have not yet formulated the pitch of the coning axis φbar(t) in Coning Theory, but the 
magnitude of εV(t) should turn out to equal that of εH(t) due to their aerodynamic similarity 
and identical lag-time constants. The stimulus-response lag-times producing these two 
dynamic angular tracking errors, εV(t) and εH(t), are each on the order of one half the 
period T2 = 2π/ω2(t) of the bullet’s coning motion, or π/ω2(t) seconds.  
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Earth-Fixed Coordinate System 
We can define a rotating (non-inertial), right-handed, earth-fixed rectangular “Local 

Vertical-Local Horizontal (LVLH)” coordinate system with its origin fixed to the rotating 

earth at the firing point. We can utilize the precepts of classical mechanics as if we were 

operating in a non-rotating inertial space if we add a synthetic “Coriolis force” acting upon 

any moving object in this rotating earth-fixed coordinate space. The equally necessary and 

synthetic “centrifugal force” acting upon any object in our rotating coordinate system is 

already included in the vector force-field which we commonly call the “gravitational field” 

of the earth. With these caveats observed, we can treat LVLH as a “rotating inertial” 

coordinate system. For analytic purposes, we often “turn off” the Coriolis effect calculations 
in a flight simulation run when we wish to study aeroballistic effects in isolation.  

Let a horizontal x-axis be aligned with the firing azimuth of our rifle barrel which is 

elevated in flat firing at no more than 100 milliradians (5.7 degrees) above the local 

horizontal. Muzzle elevations of 10 to 30 milliradians are typical in long-range rifle firing. 

We term this type of precision-aimed long-range rifle shooting “flat firing,” and strive to 

keep the rifle bullet’s airspeed supersonic (above Mach 1.2) all the way to its distant target.  

Thus, the trajectory of the fired rifle bullet will not deviate far from this x-axis during its 

supersonic flight so that the magnitude of its mean velocity V(t) can be well approximated 

as:  

{V(t)} ≈ {dx/dt}          (7) 

Let us define a y-axis in the local horizontal plane to be positive leftward from the firing 

direction at a right angle from the firing azimuth and term any horizontal displacement in 

this y-direction as “drift.” Thus, the rightward spin-drift of a right-hand spinning rifle bullet 

will produce negative y-coordinate drift values.  

We can complete the right-handed earth-fixed LVLH coordinate system by defining a z-axis 

to be positive vertically upward and term the vertical displacement as “drop.” We often 

specify some firing height above the xy-plane and some non-zero muzzle elevation angle 

above the horizontal x-axis so that a trajectory simulation run can be terminated when the 

bullet falls through the xy-plane. In any case, we calculate a positive “DROP from bore axis” 

distance by mathematically projecting that bore axis and subtracting the bullet’s vertical z-

coordinate value from that projected bore-axis height for each simulation reporting time.  

 

Recovering the Mean Trajectory 
Our available PRODAS reports give CG location data in feet (to the nearest 0.01 foot) for 

each millisecond of simulated flight time (t).  

The mean trajectory (of the “mean CG” of the bullet) can be recovered directly by low-pass 

digital filtering of these y(t) “drift” and z(t) “drop” data streams to remove the confounding 
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effects of the coning motion of the bullet’s CG. Ballisticians term these small modulating 

effects “epicyclic swerve.”  The downrange distance x(t) is not modulated by the bullet’s 

coning motion in flat-firing. For an adequately spin-stabilized rifle bullet, its fast-mode 

gyroscopic nutation rate ω1(t) always exceeds at least 4*ω2(t), and this faster epicyclic 

motion of the spin-axis direction does not move the CG of the bullet by any amount 

detectable in these flight simulation reports.  

An equally-weighted running-mean low-pass digital filter can be employed to recover the 

drift and drop values defining the mean trajectory. The filter width should be 2*n+1 data 

samples, where the integer value n = 1 + INT[1000*π/ω2(t)] for a uniform 1-millisecond 

sampling (or reporting) interval. Unfortunately, the filter half-width n must increment 

occasionally as the coning rate ω2(t) slows gradually during the simulated flight, and the 

first and last n filtered data values are never available due to filter operator end-effects. A 

third-order (cubic) interpolation using 4 successive data points is ideal for finding any 
needed mean CG locations between the reporting times.  

Vertical and Horizontal Projections of the 3-D Mean Trajectory 
For any given spin-stabilized rifle bullet fired nearly horizontally in typical “flat firing,” the 

vertical DROP(t) of the mean trajectory from the projected bore axis direction at firing and 

the size of the horizontal spin-drift displacement SD(t) have been found to bear a near 
constant ratio relationship throughout long-range ballistic flight beyond the first 150 yards 

or so. That is, at any later time t during the flight, the magnitude of the spin-drift SD(t) is:  

SD(t) = ScF*DROP(t)         (8) 

where ScF is an essentially invariant scale factor of around 1.0 to 2.5 percent for long-range 

rifle bullets. ScF is nearly invariant over time t and distance x during any particular long-

range flight. That is, ignoring the epicyclic swerve effects, the horizontal projection of the 

mean trajectory looks like a scaled-down version of the vertically projected trajectory 
rotated 90 degrees about the axis of the bore at firing time.  

This relationship was discovered during analysis of PRODAS 6-DoF simulated flight data 

for military M118LR Special Ball 7.62 mm ammunition, but it is believed to hold true for all 

spin-stabilized rifle bullets in flat firing. The numerical data show this nearly invariant ratio 

effect quite clearly, and it is unlikely to be accidentally true only for this one particular flat-

firing trajectory. Whether any aspect of this effect extends to the high-angle firing of spin-

stabilized artillery projectiles remains to be investigated.  

This long-range-invariant scale factor ScF is about 1.2 percent for a modern long-range, 

low-lift, low-drag rifle bullet fired at high muzzle velocity, and is somewhat greater than 2.3 
percent for a slower, shorter, fatter, higher-lift, higher-drag 30-caliber rifle bullet.  
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Implications of this Proportionality Observation 
The implications of this observation that spin-drift horizontal displacement is directly 
proportional to drop from the bore axis at all long ranges are discussed below.  

Implications for Horizontal Tangent Angle 
The tangent to the horizontal projection of the bullet’s mean trajectory in the LVLH 

coordinate system at any time-of-flight t forms the angle βT(t) with the +x-axis which is 

itself defined by the original launch azimuth of the bullet. Thus, the angle βT(t) defines the 

instantaneous attitude of the horizontal projection of the bullet’s +V mean velocity vector 

with respect to the +x axis. Here we are considering only the isolated horizontal spin-drift 

of the mean trajectory and not any wind drift, Coriolis Effect, aeroballistic jump, or epicyclic 
swerve (coning motion) effects.  

This horizontal tangent angle βT(t) plus a small dynamic horizontal tracking error angle 
εH(t) equals the yaw-of-repose angle βR(t) at any time t during the flight.  

Since the scale factor ScF tends to be invariant over time-of-flight t and flight distance x 

beyond the first 150 yards or so, we can form the first time-derivative of Eq. 8 for long 
ranges simply as:  

dSD/dt = ScF*dDROP/dt         (9) 

From Eq. 7 for “flat firing” nearly horizontally along the x-axis, we can divide through by the 

non-zero magnitude of the velocity {V(t)} of the bullet at time t to find the horizontal 

tangent angle βT(t) of the mean trajectory:  

βT(t) ≈ dSD/dx = [dSD/dt]/[dx/dt] = ScF*[dDROP/dt]/{V(t)} = ScF*[Φ(t) - Φ(0)] (10) 

The DROP-velocity function dDROP/dt can be obtained by filtering out the coning motion of 

the bullet’s CG from 6-DoF simulation DROP data or by running a 3-DoF point-mass 

trajectory propagator. The instantaneous magnitude ratio of the bullet’s drop-velocity 

dDROP/dt to its horizontal velocity {V(t)} is just the total change in its vertical flight path 

angle Φ(t) since launch as long as the magnitude of V(t) remains much greater than the 

magnitude of the drop velocity dDROP/dt, as in flat firing.  

Eq. 10 also indicates that throughout the bullet’s typical supersonic flight in flat firing its 

horizontal angular deviation from the launch azimuth βT(t) due to spin-drift is equal to the 

scale factor ScF times the positive-downward total vertical angular change ΔΦ(t) in its 

flight path angle Φ(t) from its original launch elevation angle Φ(0),  

βT(t) ≈ ScF*[Φ(t) - Φ(0)] = ScF* ΔΦ(t)         (11) 

so long as ΔΦ(t) ≈ TAN[ΔΦ(t)].  
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Implications for Wind Axes Plots 
For logical consistency, the origin of the wind axes plots of the bullet’s ongoing spin-axis 

directions in non-Eulerian pitch and yaw attitude angles should be defined, both 
horizontally and vertically, as the instantaneous +V direction of motion of the “mean CG” of 

the coning bullet; i.e., the direction of its mean velocity vector (V).  We term this smooth 

path in 3-space the “mean trajectory.”  

For many years, the vertical change ΔΦ(t) in the flight path angle Φ of the mean trajectory 

has traditionally been subtracted out of the bullet’s pitch attitude values before they were 

shown in these wind-axes plots. Logically, the much smaller horizontal tangent angle of the 

mean trajectory, βT(t) = ScF*ΔΦ(t)  from Eq. 10, should also be subtracted out before 

plotting the bullet’s yaw attitude values.  

After implementing this minor change, the yaw-of-repose angle βR(t) itself will no longer 

appear in any wind axes plots. Only the horizontal tracking error angle εH(t) will remain in 

the plotted yaw data values, just as the vertical tracking error angle εV(t) currently remains 

in the plotted pitch data values.  

The “center” of the plotted epicyclic motion of the bullet’s spin-axis in any wind conditions 

will then show the instantaneous pointing direction of that bullet’s coning axis relative to 

the instantaneous tangent to its mean trajectory, the “+V direction” of the mean velocity 
vector.  

 

Evaluating the Scale Factor 
For any given flat firing, the scale factor ScF can be numerically evaluated with good 

accuracy by ratioing (1) the net horizontal aerodynamic “lift” force which would be 

attributable to its yaw-of-repose attitude angle βR acting on the free-flying bullet at some 

distance downrange to (2) the vertically downward-acting constant weight Wt of the bullet 

due to the acceleration of gravity. We are temporarily ignoring the partial offset of the 

gravitational force Wt by a significant vertical component of the aerodynamic drag force 

acting (upward) back toward the projected axis of the bore. We can accurately evaluate 

this invariant scale factor ScF by ratioing these horizontal and vertical forces FH(T)/Fv(T) 

because the second time-derivatives (i.e., the horizontal and vertical accelerations) of Eq. 8 
retain this same invariant scale factor ratio ScF at long ranges.  

The range beyond 150 yards, or so, at which this ratio of forces is evaluated is not 

particularly critical because the horizontal lift force curving the mean trajectory rightward 

in spin-drift appears to remain very nearly a constant fraction ScF of the weight Wt of the 
bullet regardless of the bullet’s drag function as the Mach-speed of the bullet slows during 

horizontal supersonic flight. For the most accurate aeroballistic evaluation of this constant 

force ratio ScF, we select the “maximum supersonic range” occurring at flight time T when 

any subject rifle bullet is calculated to have slowed to an airspeed of 1340 feet per second, 
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or about Mach 1.2 in this standard sea-level ICAO atmosphere. We determine the flight time 

T to this airspeed by inspecting the airspeeds V(t) remaining at downrange distances as 
shown by any properly initialized 3-DoF point-mass trajectory propagation.  

From Eq. 10, the tangent angle βT turns out to be equal to ScF*[Φ(t)–Φ(0)] and this tangent 

angle βT comprises about 90 percent of the yaw-of-repose angle βR. For brevity, we write 
this for any time t when the bullet has flown farther than its first 150 yards or so, as  

βT(t) = ScF*ΔΦ(t)           (12) 

For purposes of this practical analysis, the net vertical-direction force Fv(T) acting upon 

free-flying bullet as a “free body” at time T includes the weight Wt of the bullet minus the 

upward-acting cross-bore component of the bullet’s rather large drag force FD(T):  

Fv(T) = Wt – FD(T)*Sin[ΔΦ(T)] 

Fv(T) = Wt - [q(T)*S]*CDα(T)*ΔΦ(T)        (13) 

where 

CDα(T) = Coefficient of Drag for this bullet flying at an angle-of-attack given by the coning 

angle α at the Mach-speed corresponding to an airspeed of 1340 fps. Bear in mind that the 
coning angle α(t) itself is actually an “unknowable” free variable here.  

ΔΦ(T) = [Φ(T) – Φ(0)] = Change in vertical-plane flight path angle Φ in radians from 

launch at t = 0 to time T, when the rifle bullet has slowed to an airspeed of 1340 fps. This 

angular change is inherently negative, but we are just using its magnitude here.  

The drag force FD(t) is tangent to the mean trajectory in the -V(t) direction at any time t 

only when firing through a wind-free atmosphere. We are using only the longitudinal 

tangent component of the drag force here whenever surface winds are present. Any 

crosswind produces a separate wind-drift due to the cross-track component of this drag 

force FD(t) as earlier formulated by Dedion in 1859.  

Then for consistency we must also include in the net horizontal force FH(t) acting on the 

bullet at any time t, the similar but scaled down, cross-bore horizontal component of the 
bullet’s drag force  

[FD(t)*βT(t)]H = FD(t)*ScF*ΔΦ(t)         (14) 

which continually pulls the spin-drift displacement SD(t) back toward the original launch 

azimuth, opposing the horizontal lift force due to the yaw-of-repose FL[t, βR(t)], and thereby 

keeping the horizontal and vertical projections of the mean trajectory shaped similarly.  

We can express the average effective aerodynamic lift-force on the coning bullet arising from 

the Yaw of Repose angle βR(t) as if the bullet were not coning, but simply flying with the spin-

axis always aligned with the attitude of its coning axis [α(t) = 0]. After all, it is the attitude of 

that coning axis which properly defines this Yaw of Repose angle. The actual average 
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aerodynamic horizontal angle of attack in a coordinate system moving with the free-flying 

bullet is just the tracking error angle εH(t). The aerodynamic lift-force attributable to this 
angle of attack εH(t) keeps increasing the rightward curvature of the mean trajectory.  

In earth-fixed LVLH-coordinates, the average effective aerodynamic angle of attack can be 

expressed as εH(t)+βT(t) = βR(t).  

The small rightward aerodynamic lift force acting horizontally on the bullet is actually 

counteracted partially by an even smaller cross-bore component of the bullet’s significant 

aerodynamic drag force given by q*S*CD(t)*βT(t).   

The net rightward horizontal force FH(T) acting on the flying bullet as a free body at time T 

can be formulated as:  

FH(T)  = FL[T, βR(T)] – FD*βT(T) ≈ q(T)*S*CLβ(T)*βR(T) – q(T)*S*CD(T)*βT(T)  (15) 

This combination of lift and drag forces must remain positive throughout the flight because 

the spin-drift displacement always increases. Each of the three angles in the horizontal 
plane, βR(t), βT(t), and εH(t), always increases monotonically with ongoing time-of-flight t.  

Having set ScF = FH/FV at time T, and using βT(T) from Eq. 12,we find that  

ScF*[Wt - FD(T)*ΔΦ(T)] = FL[T, βR(T)] - FD(T)*βT(T)  

       = FL[T, βR(T)] - FD(T)*ScF*ΔΦ(T)     (16) 

By adding FD(T)*ScF*ΔΦ(T) to both sides of this equation, we have 

ScF*Wt = FL[T, βR(T)]         (17) 

ScF*Wt ≈ a constant at long ranges as βR increases and airspeed V decreases.  

Thus, the scale factor ScF from Eq. 17 can be written as  

ScF = FH(T)/Fv(T) = FL[T, βR(T)]/Wt        (18) 

which is how we actually evaluate ScF at time T when the bullet has slowed to 1340 fps.  

The scale factor ScF can be evaluated either as the ratio of the actual net horizontal and 

vertical free-body forces, FH/FV, or (more simply) as the ratio of (1) a horizontal 

aerodynamic lift force which would be attributable to an aerodynamic angle-of-attack 

equal to its yaw-of-repose attitude angle βR(t) to (2) the constant weight of the bullet Wt. 

We select the easier and more accurate method here for analytical calculation.  

At time T we evaluate the scale factor ScF for any particular bullet’s flight as  

ScF = 0.388132*[q(T)*S]*βR(T)*CLβ(T)/Wt      (19) 

where  
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0.388132 = An empirically determined constant (from PRODAS data) for all firings of 

“normally coning” dynamically stable rifle bullets through any non-zero, “reasonably 

constant” (non-diabolical) crosswinds. This constant is numerically necessary for several 

reasons, chief among them that the driving horizontal lift-force FL[t, βR(t)] is actually 

attributable only to the horizontal tracking error attitude angle εH(t) instead of the entire 

yaw-of-repose angle βR(t). The vertical forces acting on the bullet as a free body would also 

include a small upward lift force attributable to the vertical tracking error angle εV(t). Had 

we considered these small horizontal and vertical lift forces in developing Eq. 17, the 

numerator in Eq. 18 would decrease significantly while the denominator would increase 

slightly, hence the incorporation of the fractional constant multiplier.  

q(T) = ρ*V2(T)/2 = ρ*[1340 fps]2/2 = Dynamic pressure in pounds per square foot 

ρ = Density of ambient atmosphere in slugs per cubic foot 

S = π*d2/4 = Frontal cross-sectional area of bullet at the base of its ogive in square feet 

βR(T) = Yaw-of-repose angle of the bullet’s coning axis at time T in radians 

CLβ(T) = Small-yaw coefficient of lift of the bullet at the Mach-speed corresponding to 1340 
fps airspeed, and  

Wt = Weight of bullet in pounds-force, lbf.  

 

Implications for Yaw-of-Repose Angle 
If the calculated scale factor ScF is actually invariant during any particular long-range flight 

of a rifle bullet in flat firing, we can determine the yaw-of-repose βR(t) for any flight time t 

by solving a time-extended version of Eq. 19 for that function:  

βR(t) = K/[V2(t)*CLβ(t)]         (20) 

where the constant K is calculated in units of feet2/second2 as  

K = 2*ScF*Wt/(0.388132*ρ*S)        (21) 

Evaluating the yaw-of-repose angle βR(t)  from Eq. 20 yields a function very similar to that 

of the (adjusted) classic approximate formulation:  

βR(t) = π*P*G/M          (22) 

Each formulation yields about the same non-zero value βR(0) ≈ 0.130 milliradians at firing 

time (t = 0). This small yaw-of-repose attitude βR(0) is the aerodynamic angle-of-attack 

which would have been required to produce the constant horizontal lift force ScF*Wt on 

the bullet at its launch time (t = 0). Of course, we know there is actually no such side force 
of this type at bullet launch.  
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Eq. 20 also shows that the coning bullet’s yaw-of-repose angle βR(t) at target impact in flat 

firing  is inversely proportional to the square of the bullet’s retained velocity V(t) on impact 

with the target and is also inversely proportional to the bullet’s small-yaw coefficient of lift 

CLβ(t) at impact Mach-speed. The yaw-of-repose angle βR(t) increases continually as both 
V2(t) and CLβ(t) decrease steadily in long-range flat firing.  

 

Implications for Spin-Drift 
Taken together, the implications of Eq. 8 and Eq. 19 determine the bullet and rifle 

characteristics which affect the size of the horizontal spin-drift SD(t) which will be seen in 
flat firing at a long-range target.  

First, we see from Eq. 8 that long-range spin-drift displacement SD(t) is always 

proportional to the bullet’s DROP(t) in distance units from the projected axis of the bore at 

firing. This implies that modern lighter-weight “flat shooting” bullets fired at higher muzzle 

velocities V(0) and retaining more velocity farther downrange (higher ballistic coefficient, 

lower drag bullets) will produce much less spin-drift SD(t) at any given target distance 

compared to slower, higher-drag bullets. That is, here SD(t) is roughly proportional to the 

square of the time-of-flight t to the target distance.  

Second, according to Eq. 19, the size of the scale factor ScF, and thence the size of the spin-

drift SD(t), varies directly with the “potential ballistic drag force” q(t)*S = ρ*V2(t)*S/2 in 

pounds. The ambient atmospheric density ρ varies with shooting conditions. The rifle 

bullet’s retained velocity V(t) depends upon its muzzle velocity V(0), its mass m, and the 

integrated drag function CDα  of that bullet. The bullet’s cross-sectional area S = π*d2/4 

varies with the square of the bullet’s caliber d.  

Third, the spin-drift SD(t) of the bullet is proportional to its yaw-of-repose angle βR(t) 
throughout its flight:  

βR(t) = (2π*g/t)∫[ω2(t)*V(t)]-1 dt  

Both the coning rate ω2(t) and the forward velocity V(t) of the bullet are always gradually 

decreasing, continually increasing βR(t) throughout the bullet’s flight. The coning rate ω2(t) 

is determined by the bullet’s fixed inertial ratio Iy/Ix and by its remaining spin-rate ω(t) and 

the slowly increasing gyroscopic stability Sg of the flying bullet. The forward velocity V(t) of 

the flying bullet depends on its launch velocity V(0) and its coefficient-of-drag profile in the 

prevailing atmosphere.  

The yaw-of-repose attitude angle βR(t) is increased for bullets having larger numerical Iy/Ix 

ratios and higher initial stability Sg, but βR(t) is decreased by using faster twist-rate barrels 
and higher muzzle velocities V(0) to achieve that higher gyroscopic stability Sg.  
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Fourth, the spin-drift SD(t) is directly proportional to the small-yaw coefficient of lift CLβ(t) 

of the bullet. Very-low-drag (VLD) and ultra-low-drag (ULD) bullet designs usually have 
correspondingly reduced coefficient-of-lift functions at all supersonic airspeeds.  

Fifth, and lastly, the spin-drift SD(t) of the bullet is inversely proportional to the weight Wt 

(or mass m) of that bullet. All else being equal, bullets made with lower average material 
densities, such as turned brass bullets, will weigh less and thus suffer greater spin-drift.  

These five SD effects combine multiplicatively in this analysis. Some bullet and rifle design 

parameters recur in several of these different SD effects, and not always working in the 
same direction.  

As modern long-range rifles and their bullets seem to be evolving toward lighter-weight, 

smaller-caliber, lower-drag bullets fired at higher spin-rates and at higher muzzle 

velocities, these related incremental variations in design parameters combine algebraically 
to reduce the spin-drift SD occurring on long-range targets.  


